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plementing the characteristic equations with appropriate
jump relations, i.e., by solving the corresponding local Rie-The present work is concerned with an application of the theory

of characteristics to conservation laws with source terms in one mann problem.
space dimension, such as the Euler equations for reacting flows. Research in detonating flows was pioneered by Von
Space-time paths are introduced on which the flow/chemistry equa- Neumann [55], Zeldovich [57], and Doering [14] 50 yearstions decouple to a characteristic set of ODE’s for the corresponding

ago and, subsequently, by others. Numerical integrationhomogeneous laws, thus allowing the introduction of functions
of the governing equations, in high-resolution meshes, wasanalogous to the Riemann invariants in classical theory. The geome-

try of these paths depends on the spatial gradients of the solution. initiated by Fickett and Wood [18]. In the past, progress
This particular decomposition can be used in the design of efficient was achieved in the study of the stability (see, e.g., Erpen-
unsplit algorithms for the numerical integration of the equations.

beck [16], Lee and Stuart [29]) and the high- and low-As a first step, these ideas are implemented for the case of a scalar
frequency asymptotic nature of detonations (see, e.g.,conservation law with a nonlinear source term. The resulting

algorithm belongs to the class of MUSCL-type, shock-capturing DiPerna and Majda [13], Majda and Rosales [36, 37], Choi
schemes. Its accuracy and robustness are checked through a series and Majda [8], Majda and Roytburd [38], Kapila et al. [23]).
of tests. The stiffness of the source term is also studied. Then, Accurate algorithms for gas dynamics were first em-
the algorithm is generalized for a system of hyperbolic equations,

ployed in detonation problems in the late 1980s, usingnamely the Euler equations for reacting flows. A numerical study
splitting techniques (see, e.g., Colella et al. [9], and Yeeof unstable detonations is performed. Q 1997 Academic Press

[56]). Further development of these codes and extensive
numerical investigations were carried through to the 1990s

1. INTRODUCTION (see, e.g., Bourlioux et al. [5], Lappas et al. [25], Pember
[43], Quirk [44], LeVeque and Shyue [31]). These algo-

A variety of efficient numerical schemes for hyperbolic rithms employed a splitting technique, i.e., integration of
systems of conservation laws has been developed in the the gasdynamic terms of the equations first, and integration
recent past. These schemes evolved following the under- of the appropriate ODE for the source term in an interme-
standing of fundamental concepts from the theory of non- diate step.
linear hyperbolic PDE’s, such as characteristic surfaces, This decoupling can be done in an optimal way using
existence, uniqueness, and solution of the Riemann prob- Strang-type [50] splitting. Bounds for the L1 errors of split-
lem, etc. See, for example, Courant and Hilbert [11], Lax ting methods have been established for scalar conservation
[27, 28], and Yee [56] for a review of the literature. The

laws by Crandall and Majda [12] for dimensional splittingmain application of these schemes was compressible, non-
in multidimensional homogeneous equations and by Tangreacting flow.
and Teng [51] for time-splitting in 1D scalar laws withHigher-order schemes, such as the ENO schemes
source terms. Nevertheless, this decoupling introduces nu-(Harten et al. [21]), the MUSCL scheme (van Leer [53]),
merical errors. The decomposition of the equations intothe PPM scheme (Colella and Woodward [10]), and Roe’s
scalar fields is not straightforward; i.e., the quantitiesapproximate Riemann solver [45], can be viewed as exten-
known as Riemann invariants are now not constant alongsions of Godunov’s original scheme to second-order accu-
the characteristic trajectories. Such an error can be signifi-racy. This is done by making use of the theory of character-
cant in systems with multimode instabilities and multiplic-istics for systems of hyperbolic PDE’s in one space
ity of spatial and temporal scales, such as the Euler equa-dimension. They employ the characteristic decomposition
tions for reacting flows.of the equations into a set of scalar fields, locally (at each

So far, efforts to design unsplit schemes had been basedcomputational cell), to evaluate the flux terms at the cell
interfaces. Discontuous solutions can be computed by sup- on the idea of modifying the Riemann problem on the cell
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interfaces, to take care of the presence of the source terms. MUSCL-type schemes by constructing algorithms in which
the integration of the equations, including the contribu-This idea of a generalized Riemann problem was intro-
tions of the source terms, is performed in a single, fullyduced by Liu [34] for quasi-one-dimensional (area-varying)
coupled step. This is achieved by tracing the correspondinggas flows. He considered a Riemann problem, where the
invariant paths, in a way analogous to characteristic-tracinginitial data were not uniform on each cell but satisfied
in the homogeneous case.the steady-state equations, to construct a random-choice

The first part of this paper deals with the developmentmethod to prove the existence of global solutions for the
of these ideas for a scalar conservation law with a nonlinearnonhomogeneous system of equations. Glimm et al. [19],
source term. Extensive numerical experimentation hasand van Leer [54] derived second-order accurate schemes
been conducted. The results are compared with approxi-for such flows based on this idea. Roe [46, 47] proposed
mate solutions, or exact solutions whenever possible. Thethe addition of extra terms in the expressions of the wave
role of the stiffness of the source term has also been exam-strengths in Roe’s approximate Riemann solver [45] that
ined. The second part deals with the unsteady, compress-take the source terms into account. Ben-Artzi and Falcov-
ible, Euler equations for reacting flows in one space dimen-itz [3], also concerned with area-varying flows, considered
sion. Comparisons with results obtained by conventionala Riemann problem for the nonhomogeneous equations
schemes are made.with linearly distributed initial states. They derived expres-

sions for the time derivatives of the unknown variables
2. THE INVISCID BURGERS EQUATION WITH Aand their fluxes by solving this Riemann problem and then

NONLINEAR SOURCE TERMused these expressions in the upwinding step of their algo-
rithm. Application of this strategy to unsplit schemes for 2.1. General Formulation
reacting flows was presented by Ben-Artzi [2].

Consider the following initial value problem for theAn alternate approach was recently introduced by Lap-
scalar u(x, t):pas et al. [26] who developed an unsplit MUSCL-type

scheme for the 2D compressible equations. The equations
of motion of a compressible, nonreacting fluid, along the ­

­t
u 1

­

­x
f(u) 5 g(u), x [ [0, y), (2.1a)

characteristics in two and three space dimensions, are not
homogeneous. They include a kinematic, source-like term u(x, 0) 5 u0(x) [ [0, 1]. (2.1b)
that is proportional to the in-plane divergence of the veloc-
ity field, i.e., the two-component divergence in the plane The corresponding homogeneous law is associated with a
locally perpendicular to the classical characteristic (Lappas convex entropy pair, i.e., the entropy function: f(u), and
et al. [26, Eq. (46) and related discussion]). As a conse- the entropy flux: c(u), satisfying
quence, the classical characteristics do not serve as paths
for Riemann invariants in more than one space dimension.

cu 5 fu fu.
In the analysis by Lappas et al. [26], a general methodology
is developed that defines manifolds in space-time, dubbed The entropy pair is subject to the following entropy con-
as ‘‘Riemann invariant manifolds,’’ along which the equa- dition:
tions are decomposed into the same scalar fields as in
the 1D case and solved numerically. These manifolds may

­

­t
f(u) 1

­

­x
c(u) # 0. (2.2)appear to be space-like, or time-like, in the classical de-

scription, depending on the flow-velocity gradients, but
they embed the paths along which the characteristic equa-

Furthermore, the source term, g(u), is assumed to satisfytions apply (exactly).
In the present paper, the work of Lappas et al. [26] is

g(u) [ C 2([0, 1], R), (2.3a)extended to systems of hyperbolic conservation laws with
source terms, such as compressible, reacting flows. For g(0) 5 0 5 g(1). (2.3b)
one-dimensional systems, a set of paths is defined in space-
time, such that the equations that hold along these paths Let V 5 [0, y) 3 [0, T ]. A bounded measurable function,
are the same as the equations that hold along the character- u, is a weak solution of (2.1), if ;j [ C 1(V) with compact
istics in the corresponding homogeneous case. As in the support in ([0, y) 3 [0, T)),
case discussed by Lappas et al., the local geometry of these
paths depends on the spatial derivatives of the flow vari- E E

V
(ujt 1 f(u)jx) dx dt 1 Ey

0
u0(x)j(x, 0) dx

(2.4)
ables, as well as on the source terms themselves. These
paths facilitate the design of unsplit algorithms. In particu-

5 2E E
V

jg dx dt.lar, an effort was made to improve the performance of the
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Existence and uniqueness of weak solutions for this prob-
u(x, t) 5 u0

et/«

1 1 (et/« 2 1)u0
, (2.10a)lem was given by Kruzkov [24]. The source term, g(u), is

constructed to possess two equilibrium values, at u 5 1
and u 5 1. The large-time solution of the above initial along the curves,
value problem may approach one equilibrium value, or
another, depending on the nature of the source term. The

x 5 x0 1 « log[1 1 (et/« 2 1)u0]. (2.10b)decay estimates for the corresponding homogeneous law
(Lax [27, 28]) do not hold for the above problem.

Given the above relation, one can deduce the followingThe characteristic decomposition of the problem yields:
shock-formation criterion: For the initial value problem
given by (2.7) and (2.8), a shock is formed if the followingdu

dt
5 g(u), along

dx
dt

5 fu . (2.5) inequality is satisfied:

Motivated by the fact that for the corresponding homoge- u0(x) 1 «u90(x) , 0 for some x, (2.11)
neous law, u remains constant along characteristics, some-
one could ask the question: Along which curve in space-

where u90(x) is the derivative of u0(x). The shock-formationtime does u remain constant? The answer is that, at smooth
time is given byparts of the flow,

du
dt

5 0, along
dx
dt

5 fu 2
g(u)

­u/­x
. (2.6) ts.f. 5 « log SA(x) 2 1

A(x) D, A(x) ; (u0(x) 1 «u90(x))min.

(2.12)The geometry of this curve depends locally on the spatial
derivatives of the solution. This, however, should not be
disturbing because the derivatives are known for any time The equation of the constant-u curves is given by
the solution itself is known, i.e., all the necessary elements
to construct this curve in space-time are available, without dx

dt
5 u 2

g(u)
­u/­x

; v(x, t). (2.13)extra cost.

2.2. Description of the Algorithm and Numerical Results
The issue of the limit case ­u/­x R 0 will now be ad-

Consider the initial value problem formulated as above, dressed. First, it should be noticed that the equation is not
when f(u) 5 u2/2: singular at the points of the (x, t)-plane, where the spatial

derivative of the solution becomes zero. The path defined
by (2.13) becomes locally parallel to the x axis at those­

­t
u 1

­

­x Su2

2 D5 g(u), x [ [0, y). (2.7a)
points. At such points, it cannot be used for the evaluation
of the fluxes at the interfaces. Additionally, a nonzero,

u(x, 0) 5 u0(x) [ [0, 1]. (2.7b) but very small, value of ux (it can occur, say, in the cells
neighboring the one, where ux 5 0) might lead to a large

A typical nonlinear term satisfying (2.3a) and (2.3b) is value of v(x, t). Then, a small time-step would be necessary
when (2.13) is to be integrated numerically, to maintain
the desired-level of accuracy. For these isolated cases, itg(u) 5

1
«

u(1 2 u), (2.8)
would be better to find the fluxes at the interfaces by
employing a Taylor expansion. In the following, it is shown

where « is a coefficient measuring the stiffness of the sys- how these ideas can be combined in a simple and uni-
tem. An entropy pair associated with the corresponding form manner.
homogeneous law is given by A similar phenomenon can occur in the application of

shock-capturing schemes for the numerical solution of
Hamilton–Jacobi-type equations. A well-known examplef(u) 5 u2, c(u) 5

2
3

u3. (2.9)
is the computation of moving fronts whose speed is curva-
ture-dependent (Osher and Sethian [41], Sethian [48]). The
equivalent situation there arises when the speed of theIn the case where the source term is given by (2.8), and

for smooth u0(x), the equation of the characteristic decom- front is locally zero. No serious difficulties were reported
in the computations at these points.position yields
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The algorithm proposed for the numerical integration Dx
2

2 xp 5
Dt
2

(un
j 1 (ux)j xp) 2 (g(un

j )

(2.19)
of the above problem belongs to the class of second-order
accurate MUSCL-type schemes and is described below.

Consider uniform spacing in the x direction, of length 1 gu(un
j )(ux)j xp) E(n11/2)Dt

nDt

dt
ux

.
Dx, and let un

j be the average of u in the jth cell at time
t 5 nDt, i.e.,

The integral appearing on the right-land side of (2.19) can
be evaluated by the forward Euler method. Numerical

un
j 5

1
Dx

E( j11/2)Dx

( j21/2)Dx
u(x, n Dt) dx. (2.14) experiments, however, showed that the accuracy of the

algorithm can be improved by using trapezoidal rule with
the right endpoint approximated by a Taylor series, i.e.,

Assume linear interpolation of u(x, nDt) on each cell:

E(n11/2)Dt

nDt

dt
ux

5
Dt
2

h(un
j , (ux)j),

u(x, nDt) 5 un
j 1 (ux)j x, x [ F2

Dx
2

,
Dx
2 G. (2.15)

where
The slope of u(x, t) on each cell, (ux)j , can be computed
using a standard TVD limiter. In the present algorithm,
van Albada’s limiter was chosen (van Leer [54]):

h(un
j , (ux)j) ; 1

2 1 1
(ux)j

1
1

(ux)j 1
Dt
2

(uxt)j)2;
g(un

j , (ux)j)
(ux)j

(ux)j 5 ave(u2
x , u1

x ), (2.16a)

(2.20)
where,

and

u2
x 5

un
j 2 un

j21

Dx
, u1

x 5
un

j11 2 un
j

Dx
, (2.16b)

(uxt)j 5 (ux)j (gu(un
j ) 2 (ux)j). (2.21)

ave(a, b) ; a 1 b
2 S1 2

(a 2 b)2

a2 1 b2 1 c2D, (2.16c) Equation (2.19) must be supplemented with the appro-
priate jump relations that take care of discontinuities, i.e.,
an appropriate Riemann problem has to be solved locally

and c is a small number (c2 ! 1). at the interface. The Riemann problem for the correspond-
The conservation law (2.7) is approximated by the fol- ing homogeneous law, i.e., the inviscid Burgers equation,

lowing explicit finite-difference scheme: admits a self-similar solution, depending on x/t only (see,
for example, Lax [27]). For the nonhomogeneous conserva-
tion law, the Rankine–Hugoniot relation remains the

un11
j 5 un

j 2
Dt
Dx S(un11/2

j11/2 )2

2
2

(un11/2
j21/2 )2

2 D (2.17) same, but the rarefaction wave no longer admits a self-
similar representation. However, as x R 0 and t R 0, the
solution of the nonhomogeneous case approaches the self-1

Dt
2

(g(un11/2
j11/2 ) 1 g(un11/2

j21/2 )).
similar solution of the corresponding homogeneous prob-
lem. Also note that, for locally smooth solutions, the pro-
cess of solving the discretized version of the ODE thatIn this relation, un11/2

j11/2 denotes the value of u at the right
holds along the curve (2.13) is sufficient because it givesinterface of the jth cell at a time t 5 (n 1 1/2) Dt. It is
second-order accurate results. The solution of the Riemannevaluated by tracing the constant-u curve forward in time,
problem has to be employed only if discontinuities areas given by (2.13). This is done by locating the point, xp,
present. These discontinuities, however, are due to thethat lies on that curve and satisfies u(xp, nDt) 5 un11/2

j11/2 :
convective terms of the conservation laws and not the
source terms; hence the inclusion of the source terms givesDx

2
2 xp 5

Dt
2

u(xp, nDt) 2 g(u(xp, nDt)) E(n11/2)Dt

nDt

dt
ux

. just a higher order correction (for a detailed discussion on
this subject, see Pember [43]). Therefore, the self-similar

(2.18) solution can be used for computational purposes without
loss of accuracy. For the conservation law under consider-
ation and given the fact that u(x, t) . 0 (thus only shocksAssuming linear interpolation of both u(x, t) and g(u) at

each cell, this relation gives that propagate to the right are acceptable), the numerical
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solution of the Riemann problem reduces to the follow- As a first of the scheme, the source term given by (2.8)
was considered, with « 5 1. Initial and boundary conditionsing procedure:

Let uL, uR the solution at the left and right side of the (IC’s and BC’s) are given by
jth interface:

u0(x) 5 Hx(1 2 x), if x # 1,

0, if x . 1,
(2.25)

uL 5 un
j 1

Dx
2

(ux)j ,

anduR 5 un
j11 2

Dx
2

(ux)j11 ,

u(0, t) 5 0, u(y, t) 5 0 ;t. (2.26)
and let Du 5 uR 2 uL . Let u(xp, nDt) be the value evaluated
by tracing the invariant curve (2.13) in time, as described The results obtained for this problem are given in Fig. 1.
above, and let v(xp, nDt) be the tangent of (2.13) passing For this test case, CFL 5 0.6. A shock is formed at time
through (xp, nDt). Then, un11/2

j11/2 is given by t 5 0.61803. The value of u behind the shock increases
because of the source term, until u 5 1, which is a stable
equilibrium value (the value u 5 0 is an unstable one).

un11/2
j11/2 5 Hu(xp, nDt), if v(xp, nDt) . 0,

u(xp, nDt) 2 Du, if v(xp, nDt) , 0.
(2.22) From then on, the shock propagates with a speed s 5

0.5. The evolution process is captured quite well by the
present scheme.

As mentioned above, in the absence of discontinuities, As a second test, the initial conditions of the previous
this procedure gives problem are changed to

un11/2
j11/2 5 u(xp, nDt) 5 un

j

u0(x) 5 H1, if Dx , x # 1,

0, if x . 1, or 0 , x , Dx.
(2.27)

1
Dt
2

SDx
Dt

2 un
j D (ux)j 1 g(un

j )g(un
j , (ux)j)

1 1
Dt
2

(ux)j 2
Dt
2

gu(un
j )g(un

j , (ux)j)
. (2.23)

The results obtained for this problem are given in Fig. 2.
For this test case, CFL 5 0.6. The left discontinuity, initially
at x 5 1, becomes a rarefaction wave. The head of this
expansion, which is an ‘‘acoustic’’ disturbance, moves withAt the limit ux R 0, this relation has no singularity and
characteristic speed uch 5 1.0, while the tail stays at thecan be used even for that limiting case. The following
origin because the characteristic speed there is zero. Theexpression, based on Taylor-series expansion, could also
right discontinuity moves with a shock speed s 5 0.5. Asbe used:
soon as the head of the expansion reaches the shock, the
shock starts to decay. This decay, however, stops because

un11/2
j11/2 5 un

j 1
Dx
2

(ux)j 1
Dt
2

(ut)j . (2.24) the source term eventually restores the postshock value at
the upper equilibrium level.

Consider now the following Riemann problem:We compare the performance of the proposed scheme with
the use of (2.24), globally, below (both expressions result
in second-order accurate schemes). The fact that, for this

u0(x) 5 H0, if 0 # x,

1, if x . 0.
(2.28)particular scalar conservation law, Taylor-series expan-

sions are not necessary to avoid division by zero, cannot
be easily generalized. For this problem, we can use (2.10a), (2.10b) to get the

Finally, it should be noted that any interpolation proce- expression of the resulting rarefaction in closed form:
dure can be implemented with the algorithm, because the
interpolation step is in principle independent of the nature
(split or unsplit) of the scheme. This step, however, plays
an important role in the accuracy of any shock-capturing u(x, t) 5 5et/«(ex/« 2 1)

ex/«(et/« 2 1)
, if x # t,

1, if x . t.

(2.29)
method. This is more so in the present case, because effi-
ciency and robustness of the scheme depend greatly on
the accuracy with which the ‘‘invariant’’ curve (2.13) is
known and, hence, on the accuracy with which the spatial The computed rarefaction, as shown in Fig. 2 (and for

times that the postshock value is 1.0, so that u gets thederivatives of the solution are approximated.
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FIG. 1. Spatial profiles for the case where g(u) 5 u(1 2 u), and IC’s, and BC’s given by (2.25) and (2.26), respectively. Profiles at t 5 0.0, 1.0,
2.0, 3.0, 4.0, 5.0, 10.0, 15.0. Dx 5 0.02.

FIG. 2. Spatial profiles for the case where g(u) 5 u(1 2 u), and BC’s, and IC’s given by (2.26) and (2.27), respectively. Profiles at t 5 0.0, 1.0,
3.0, 5.0, 10.0; Dx 5 0.02.
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FIG. 3. Spatial profiles for the case where g(u) 5 2u(1 2 u), and BC’s, and IC’s given by (2.26) and (2.27), respectively. Profiles at t 5 0.0,
1.0, 3.0, 5.0; Dx 5 0.02.

equilibrium values at the endpoints of the rarefaction), are spurious shock speed, usually of one cell per time-step for
coarse resolutions. It is also acknowledged (Bourlioux [4])in excellent agreement with the above relation.

The same problem is also considered, but with a source that finer temporal resolutions produces shock speeds of
one cell per 2–3 time-steps. Pember [42] also pointed thatterm given by
out and additionally conjectured a criterion for the nonap-
pearance of spurious solutions by implicit schemes for dissi-g(u) 5 2u(1 2 u). (2.30)
pative, 2 3 2 systems. The criterion was the commutability
of the vanishing viscosity limit for viscous regularizationsThe only difference with the previous problem is in the
of (2.7) and the limit of infinite stiffness. Chen et al. [7]sign of the source term. The value u 5 1 is now unstable
proved this commutability for such systems.while u 5 0 is stable. Expressions for the characteristics

In the present numerical investigations, the focus is onand the shock-formation criterion can also be derived for
the scalar law given by (2.7) and (2.8). The proposedthis case. Numerical results for this problem are shown in
scheme is compared with its equivalent split scheme, i.e.,Fig. 3. Again, they are obtained with CFL 5 0.6. Note that

the shock wave decays with a rate faster than O(1/Ït),
which is the decay rate for a shock wave in the correspond- un11 5 L (Dt/2)

s L (Dt)
f L (Dt/2)

s (un). (2.31)
ing homogeneous law.

The issue of the stiffness of the source term will now be Here, L f is the numerical solution operator for the corre-
discussed. Many authors have devoted attention to the sponding homogeneous conservation law
numerical integration of hyperbolic PDEs with stiff source
terms and the spurious solutions that might be obtained
(e.g., Colella et al. [9], LeVeque and Yee [32], Bourlioux ­u

­t
1

­

­x Su2

2 D5 0. (2.32a)
[4], Griffiths et al. [20], and Pember [42]). Even though
shock-capturing schemes are stable, even in stiff cases,
coarse spatial resolution may give incorrect propagation It is a MUSCL-type algorithm like the nonlinear version

of Scheme III of van Leer [52]. The flux at the interfacesspeeds of discontinuities. This is because the source terms
are activated throughout the region occupied by the at time t 5 (n 1 1/2)Dt is evaluated by tracing the character-

istic, dx/dt 5 u, and solving the Riemann problem associ-smeared shock, in a nonphysical manner. The result is a
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FIG. 4. Performance of unsplit and split algorithm for the problem given by (2.7), (2.8), (2.33), and (2.34), for « 5 0.01 (a); « 5 0.02 (b);
« 5 0.03 (c); « 5 0.05 (d); « 5 0.07 (e).

ated with (2.32a). Ls is the numerical solution operator for In the present work, Ls is chosen to be the second-order
accurate, Runge–Kutta scheme. It could be argued that athe ODE,
more efficient split scheme could have been selected, such
as an implicit one. But then again, the same is true for thedu

dt
5 g, (2.32b)

unsplit scheme; the implicit version of the unsplit scheme
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FIG. 4—Continued

for a scalar law can be easily implemented. The choice For this study, the initial conditions were given by
is made among second-order accurate schemes that had
already been used in systems of PDEs such as the Euler
equations. The MUSCL algorithm used in the split scheme u0(x) 5 H1, if x # 1,

0, if x . 1,
(2.33)

is generally regarded as one of the most efficient algorithms.
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FIG. 4—Continued

with boundary conditions given by between the results given by that scheme and the ones
given by the proposed (unsplit) scheme was negligible.
Subsequently, the same test problem is solved with au(0, t) 5 1, u(y, t) 5 0 ;t. (2.34)
smaller CFL number, namely CFL 5 0.5. The changes in
the numerical results are small for both schemes. ThisFor both algorithms, the discretization is Dx 5 0.02 and
observation reflects the fact that both the spatial and thethe CFL number was 0.8. Results for « 5 0.01, 0.02, 0.03,
time discretization have to be small to avoid spurious solu-0.05, and 0.07 are given in Figs. 4.
tions.Let s be the shock speed. For this problem s 5 0.5. The

It is also interesting to mention that LeVeque and Yeerelative error,
[32] studied the equation

snumerical 2 sexact

sexact
,

ut 1 ux 5 2
1
«

u(u 2 1) Su 2
1
2D,

is plotted, for both schemes, in Fig. 5. The calculation of
the numerical shock-wave speeds is based on the level set with initial data given by (2.33). They used split algorithms

to solve this problem and reported no spurious wave speedsu(x, t) 5 0.5. The split scheme gives a smaller error than
the unsplit one in the regime Dt/« , 0.5, but in that regime for Dt/« Q 0.5. This is most likely due to the difference in

the source terms. For the source term in the above equa-the relative error is above 40% for both schemes and would
usually be unacceptable. The unsplit scheme seems to work tion, the preshock value, u 5 0, is a stable equilibrium.

However, for the source term in the present work, theslightly better than the split scheme, in the cases where
the above ratio was small. For « . 0.1, both schemes give preshock value u 5 0 is an unstable equilibrium. Conse-

quently, values of u(x, t) even slightly higher than 0 activatean error less than 10%. For « , 0.01, computed wave speeds
are one cell per time step. The numerical solutions go the source term which tends to increase u, until the stable

equilibrium is attained.unstable for « 5 O(105) with both schemes. Results for
that test case are also obtained by the unsplit scheme (2.17) Next, the issue of spurious continuous solutions is exam-

ined. As before, the conservation law (2.7) is consideredbased on the Taylor-series expansion (2.24). The difference
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FIG. 5. Relative error for the split and unsplit algorithm for the problem given by (2.7), (2.8), (2.33), and (2.34).

with a source term given by (2.8). Initial and boundary region increases with time at a rate, 1/« 1 1. After that
conditions are given by region, the spatial decrease of u(x, t) is exponential. There-

fore, the solution to this problem is approximately an expo-
u0(x) 5 e2x, (2.35) nential profile, travelling with speed

u(0, t) 5 1, u(x R y, t) 5 0 ;t. (2.36)

ce.p. 5
1
«

1 1.
According to (2.11), a shock is never formed in this prob-
lem. Combining Eqs. (2.10a) and (2.10b), we deduce the
following expression: Results for this case, obtained by the split scheme, the

proposed unsplit scheme, and also by the unsplit scheme
(2.17) based on the Taylor-series expansion (2.24), hereaf-u(x, t) 5 H1, if x # t,

et2x[u(x, t) 1 et/«(1 2 u(x, t))]12«, if x . t. ter dubbed as ‘‘unsplit’’—T.S.E.,’’ are presented in Fig. 6
for « 5 0.01. The exact solution, computed from (2.37)

(2.37) using Newton iteration, is plotted for comparison purposes.
It is seen that the proposed unsplit scheme and the MUSCL

Then, for « ! 1, the following approximation holds: split scheme perform better than the unsplit scheme based
on Taylor-series expansion. Furthermore, the proposed
scheme is more accurate than the split one. The CFL num-
ber is taken at CFL 5 0.5, for all schemes. When the CFLu(x, t) 5 5

1, if x # t,

e2(x2t)

e2t/« 1 e2(x2t)(1 2 e2t/«)
, if x . t. number is increased to 0.8, the proposed unsplit scheme

is again more accurate than the split scheme (see Fig. 6c).
For « 5 0.01, the relative error,

The acoustic disturbance at x 5 t, initially set at the origin,
travels with a speed equal to unity. Then, for an extended
region, the spatial decrease of u(x, t) is very slow, i.e., u(x, Ucnumerical 2 ce.p.

ce.p.
U ,

t) is almost equal to 1 within this region. The length of this
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FIG. 6. Performance of unsplit and split algorithms for the problem given by (2.7), (2.8), (2.35), and (2.36) for « 5 0.01. Dx 5 0.03, CFL 5 0.5
(a); Dx 5 0.02, CFL 5 0.5 (b); Dx 5 0.02, CFL 5 0.8 (c).

in the calculation of the speed of the exponential front free case, an increase of Dx, with Dt held constant, does
not seem to affect the accuracy of any of the schemes. Itagainst the inverse of the resolution, 1/Dx, is presented in

Fig. 7, for all three schemes. The calculation of the numeri- is found that fixing Dt, at a value of order O(«) and satis-
fying the CFL condition, is enough to produce reasonablecal speed is based on the level set, u(x, t) 5 0.5.

It is interesting to note that for this particular, shock- results, even when Dx is an order of magnitude, or more,



UNSPLIT SCHEMES FOR HYPERBOLIC CONSERVATION LAWS 43

FIG. 6—Continued

FIG. 7. Relative error in the calculation of the speed of the exponential front for the problem given by (2.7), (2.8), (2.35), and (2.36) for
« 5 0.01. All computations were performed with CFL 5 0.5.
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FIG. 8. Performance of unsplit and split algorithms for the problem given by (2.7), (2.8), (2.35), and (2.36) for « 5 0.002, Dx 5 0.004,
CFL 5 0.5.

higher than Dtuuu. This observation is not valid in the case scheme is used in the numerical study of unstable, one-
dimensional detonations. The case of detonation problemsof discontinuous solutions, where both the spatial and the

temporal discretization have to be of order O(«), or less, is particularly interesting, as regards applications, but it is
also difficult to simulate numerically. The difficulty arisesto avoid spurious shock waves.

The accuracy of the schemes remains at the same levels from the large range of time scales and length scales associ-
ated with these problems.when the value of the stiffness coefficient is increased to

1/« 5 500, with proportionally finer resolution. Again, the
3.1. General Formulationproposed unsplit scheme is slightly better than the split

one, but both outperform the Taylor-series-based algo- A homogeneous, first-order system of n quasi-linear
rithm (see Fig. 8). equations in two independent variables, (x, t),

In summary, it was observed that neither the proposed
scheme nor the split one give accurate wave speeds, if the ­

­t
U 1

­

­x
F(U) 5 0, (3.1)time-step is not smaller than the stiffness coefficient, «,

when discontinuities are present. This is not surprising
because both schemes are explicit and, therefore, good is hyperbolic, if the Jacobian DF(U) possesses real eigen-
resolution of the smallest time scale is necessary. However, values: li, i 5 1, ..., n. In the equation above, U 5 (u1, ..., un)
for reasonable time-steps, the proposed unsplit scheme is is the solution vector, and F(U) is the corresponding flux.
more accurate, particularly in cases characterized by a large System (3.1) can be written in characteristic form:
value of the stiffness coefficient.

li ? Sd
dt

UD
i
5 0, i 5 1, ..., n (3.2a)3. STUDY OF THE EULER EQUATIONS FOR

CHEMICALLY-REACTING FLOWS

(repeated index does not imply summation), withThe decomposition for the scalar conservation law de-
scribed above is extended to a system of equations in one
space dimension. An unsplit numerical scheme has been Sd

dtDi
; ­

­t
1 li

­

­x
. (3.2b)

designed based on this decomposition. The resulting
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This is done by performing the following steps: The numerical treatment of this decomposition is non-
smooth parts of the flow is completely analogous to the

1. Evaluate the eigenvalues of the Jacobian, DF(U),
treatment of the characteristic decomposition when shocks

and the corresponding (left-) eigenvectors, i.e., li 5
are present, for the homogeneous case. Even though the

(l1, ..., ln)i , i 5 1, ..., n.
characteristic decomposition in the homogeneous case

2. Take the scalar product of (3.1) with li, i 5 1, ..., n, holds only when the solution is continuous, it is still useful
produce the characteristic system (3.2). in the presence of shocks because it holds on either side

of a discontinuity. Furthermore, the computation of theseThere are important cases where the system (3.2) of
paths can be performed at no extra cost, since the informa-ODEs is integrable. The equations describing isentropic,
tion about the spatial derivatives of the flow is alwaysone-dimensional, gas-dynamic flows represent such an ex-
available at points where the solution is known.ample. In such cases, the following relation holds:

3.2. Mathematical Formulation of the 1D
Detonation Problemli ? Sd

dt
UD

i
5 Sd

dt
RiD

i
5 0, i 5 1, ..., n. (3.3)

Consider a simple model of chemical interaction of two
calorically perfect gases, A R B, assuming one-step, irre-The functions Ri, for i 5 1, ..., n, are called Riemann
versible, Arrhenius kinetics, and the absence of dissipationinvariants and are constant along the corresponding char-
mechanisms. The conservation equations are given byacteristic directions (cf. Eq. (3.2b)),

­

­t
r 1

­

­x
(ru) 5 0, (3.7a)dx

dt
5 li for i 5 1, ..., n. (3.4)

­

­t
(ru) 1

­

­x
(ru2 1 p) 5 0, (3.7b)In general, the system (3.2) is not integrable. Neverthe-

less, numerical evidence (coming mainly from results based
on shock-capturing schemes for the one-dimensional Euler ­

­t
(ret) 1

­

­x
[(ret 1 p)u] 5 0, (3.7c)

equations of gas dynamics, e.g., van Leer [53] and Colella
and Woodward [10]) has shown that it it useful for numeri-

­

­t
(rz) 1

­

­x
(ruz) 5 rg(T, z). (3.7d)cal purposes to try to decompose the initial system of PDEs

(3.1) to the characteristic set (3.2). The phrase numerical
purposes can be interpreted as ‘‘in order to develop algo-

The total specific energy and the source term are given byrithms that are both accurate and stable.’’ In the homoge-
neous case, the system (3.2) holds along the characteristic
lines (3.4). et ; p

r(c 2 1)
1 q0 z 1

u2

2
(3.8)

The case of nonhomogeneous systems, i.e., for systems
of the form

and
­

­t
U 1

­

­x
F(U) 5 G(U), (3.5) g(T, z) 5 2K z exp(2Ea/T), (3.9)

respectively, with the equation of state,the solution is not so straightforward. In this case, the set
of Eqs. (3.2) does not hold along the characteristic paths
(3.4). It is useful, however, to find the paths along which T 5 p/r. (3.10)
these equations hold. A straightforward calculation shows
that the homogeneous ODEs (3.2) will hold along the In these equations, z is the reactant mass fraction, c is the
new paths, specific-heat ratio (assumed the same for both species),

and q0 is the heat-release parameter. Ea is the activation-
energy parameter, and K is an amplitude parameter thatdx

dt
5 li 2

li ? G(U)
li ? ­U/­x

for i 5 1, ..., n. (3.6)
sets the spatial and temporal scales. As employed here,
0 # z # 1. It equals unity, when the material is totally
unreacted, and zero when the reaction has been completed.It is the system (3.2) that can be easily discretized and

solved numerically, in the upwinding step of a shock-cap- Despite the simplicity of this model, computing such
flows is quite challenging. The reason is that for a wideturing solver. While this decomposition holds only at

smooth parts of the flow, this is not a serious restriction. range of values of the parameters of the reaction-rate equa-
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tion, i.e., q0, Ea, and K, this system of conservation laws the (frozen) speed of sound, and
is linearly and nonlinearly unstable. Furthermore, the reac-
tion-rate equation is generally stiff and this leads to an v6 ; 2

K q0(c 2 1) rz exp(2Ea/T)
­p/­x 6 ra(­u/­x)

(3.15a)
extremely large range of (coupled) spatial and temporal
modes. The resolution required for the numerical simula-

v0 ; 2
K q0(c 2 1) rz exp(2Ea/T)

­p/­x 2 a2(­r/­x)
(3.15b)tion of these flows typically exceeds available computa-

tional resources.
The system (3.7) can be written in conservation form, vr ; K z exp(2Ea/T)

­z/­x
. (3.15c)

i.e., in the divergence form of (3.5) by setting

The ODEs along these paths are
U ; [u1, u2, u3, u4]T 5 [r, ru, ret, rz]T, (3.11a)

along C6 : dp 6 ra du 5 0, (3.16a)

F(U) ; Fu2,
u2

2

u1
1 p,

u2

u1
(u3 1 p),

u2u4

u1
G, (3.11b) along C0 : dp 2 a2 dr 5 0, (3.16b)

along Cr : dz 5 0. (3.16c)
G(U) ; [0, 0, 2q0(c 2 1)g, g]T, (3.11c)

There can be parts of the flow where the values of the
added convection velocities, va, for a 5 0, 1, 2, r, definedwith
by (3.15) are small and the paths defined by (3.14) are very
close to the corresponding (classical) characteristic paths.
But there can also be parts of the flow where these are

p 5 p(U) 5 (c 2 1) Su3 2
u2

2

2u1
2 q0 u4D, (3.12a) not negligible. In the latter case, the propagation speeds,

u 6 a 1 v6, will be considerably different from the classical
characteristic speeds, u 6 a, and might even differ in sign.

g 5 g(U) 5 2K u4 exp S2
u1 Ea

p D. (3.12b) Interestingly, portions of these paths that emanate from
some point, P, in the (x, t)-plane, might lie outside the
region enclosed by the (classical) characteristics emanating

The eigenvalues of the system are from P, i.e., the domain of dependence of P. In such cases,
the paths (3.14) might then be classified as locally space-
like, otherwise locally time-like, in the classical description.

l1 5 u 1 Ïcp/r, (3.13a)
These classifications, however, are based on the expres-

l2,3 5 u, (3.13b) sions for the characteristic speeds (3.4) of the system, u 6
a. Nevertheless, it is the (invariant) path equations given

l4 5 u 2 Ïcp/r. (3.13c)
by (3.6) that are the ones along which the characteristic
equations apply (exactly) and translate to the system (3.14)
for the problem under study here.The second/third eigenvalues are degenerate, therefore, z

can sustain jumps only across contact discontinuities.
3.3. Description of the Numerical SchemeThe following paths in the (x, t)-plane can be defined

by performing the decomposition of the system to a set of A second-order accurate MUSCL scheme, based on the
ODEs, as described in the previous section, above decomposition, is designed to solve the system of

Eqs. (3.7) numerically. Consider a finite-volume formula-
tion; i.e., space is discretized to a set of computational cells
of length Dx. Additionally, consider mass-averaged valuesC6 :

dx
dt

5 u 6 a 1 v6, (3.14a)
of the conservative variables

C0 :
dx
dt

5 u 1 v0, (3.14b) mj ; Exj11/2

xj21/2

r dx, (3.17a)

Cr :
dx
dt

5 u 1 vr, (3.14c) mj uj ; Exj11/2

xj21/2

ru dx, (3.17b)

mj mt j ; Exj11/2

xj21/2

ret dx, (3.17c)with

mj zj ; Exj11/2

xj21/2

rz dx. (3.17d)
a ; Ïcp/r,



UNSPLIT SCHEMES FOR HYPERBOLIC CONSERVATION LAWS 47

Finally, set dure ensures, uniformly, second-order accuracy, in both
space and time, for smooth parts of the flow.

The above set of ODEs must be supplemented with themj gj ; Exj11/2

xj21/2

rg(T, z) dx. (3.18)
appropriate jump relations to accommodate discontinu-
ities, where a Riemann problem must be solved locally at
each cell interface. The exact jump relations must generallyIn these expressions, average values of all quantities in the
be used in cells where the density and pressure slopes arejth cell are denoted by the subscript j, while values of
large. The acoustic (isentropic) approximation can be usedvarious quantities at the cell boundaries are denoted by
otherwise. A detailed description of the Riemann solverj 1 As. By employing the following notation for the fluxes,
that was used can be found in Lappas et al. [25].

The Riemann problem that corresponds to this set ofFm ; ru, (3.19a)
equations, referred as ‘‘generalized Riemann problem’’

Fu ; ru2 1 p, (3.19b) (GRP), is not the same as the classical, one-dimensional,
gasdynamic Riemann problem (RP). The GRP is not aFe ; ret u 1 pu, (3.19c)
self-similar problem and its solution is more complicated.

Fz ; rzu, (3.19d) The shock and expansion waves are curved in the (x, t)-
plane, i.e., they are accelerating. The solution to the GRP

the conservation equations at the jth cell are written as has been worked out by Ben-Artzi [2], who showed that
the solution approaches the solution of the RP in the limit
x R 0 and t R 0. The use of the classical Riemann problemd

ddt
mj 1 (Fm)j11/2 2 (Fm)j21/2 5 0, (3.20a)

for numerical purposes is, therefore, justified by the same
arguments that were mentioned earlier in this work, in the
discussion of scalar laws. It is verified later that, using thisd

ddt
(mj uj) 1 (Fu)j11/2 2 (Fu)j21/2 5 0, (3.20b)

approximation, the acceleration of the various waves can
be captured numerically quite well.d

ddt
(mj et j) 1 (Fe)j11/2 2 (Fe)j21/2 5 0, (3.20c)

3.4. Numerical Results for 1D Detonations
d

ddt
(mj zj) 1 (Fz)j11/2 2 (Fz)j21/2 5 mj gj . (3.20d) In the early 1940s, Zeldovich [57], von Neumann [55],

and Doering [14], independently proposed that detonation
waves in one-dimensional flows are steady shock waves,

As in the case of the scalar conservation law, linear interpo- propagating in a medium of local thermodynamic equilib-
lation is used for all quantities on each cell. The slopes are rium and followed by a reaction zone of finite length. This
estimated by van Albada’s limiter (2.16). The proposed theory is historically known as the ZND theory of detona-
scheme, which evaluates the solution at time (n 1 1)Dt tions. Given a fixed state ahead of the detonation, the
from the solution at the previous time nDt, can be written as computation of the spatial profiles of the solution reduces

to the numerical integration of a nonlinear ODE; see
(mj)n11 5 (mj)n 2 Dt [(Fm)n11/2

j11/2 2 (Fm)n11/2
j21/2 ], (3.21a) Fickett and Davis [17]. Typical spatial ZND profiles for

the pressure and the reactant mass fraction are given in(mj uj)n11 5 (mj uj)n 2 Dt [(Fu)n11/2
j11/2 2 (Fu)n11/2

j21/2 ], (3.21b)
Figs. 9.

(mj et j)n11 5 (mj et j)n 2 Dt [(Fe)
n11/2
j11/2 2 (Fe)

n11/2
j21/2 ], (3.21c) For the detonations governed by the one-step irrevers-

ible Arrhenius law (3.9), there is a minimum shock velocity.(mj zj)n11 5 (mj zj)n 2 Dt [(Fz)
n11/2
j11/2 2 (Fz)

n11/2
j21/2 1 (mj gj)n11/2].

This is the Chapman–Jouguet velocity, DCJ . A reaction(3.21d)
process characterized by this shock velocity is called a
Chapman–Jouguet detonation. The point at the end of the

The numerical fluxes (Fm)n11/2
j11/2 , (Fu)n11/2

j21/2 , (Fe)
n11/2
j11/2 , reaction zone of a Chapman–Jouguet detonation is sonic.

(Fz)
n11/2
j21/2 are given by Eqs. (3.19). The quantities on the For every detonation, the shock velocity, D, has to satisfy

right-hand side of (3.19) are evaluated by solving the set D $ DCJ. The parameter f, defined as
of ODEs (3.16) numerically along the trajectories defined
by (3.14). The case where a denominator in the expressions
for v1, v2, v0, vr vanishes is treated in the same way as in f ; S D

DCJ
D2

,
the scalar law. Since the points of vanishing denominators
are not points of singularity and only points of locally zero
convection, the necessary information for upwinding can is the overdrive factor of the detonation. The half-reaction

length, L1/2, i.e., the distance between the shock wave andbe obtained using a Taylor expansion in time. This proce-
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FIG. 9. (a) Typical spatial profile of the pressure for a ZND detonation. (b) Typical spatial profile of the reactant mass fraction for a ZND deto-
nation.
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FIG. 10. Shock pressure time history for a detonation with an overdrive factor, f 5 1.80. Resolution, 15 pts/L1/2. Horizontal line represents
ZND solution.

the point where z 5 0.5, has been used as unit length the overdrive factor for the above set of parameters is f* 5
1.72. It should also be noted that the value of the stiffnessthroughout.

Experimental studies suggest, in contrast with the ZND coefficient, K, is determined completely by the value of f
and the normalized speed of sound ahead of the shock,theory, that detonation phenomena are generally unstable

and possess a far more complicated structure (see, e.g., Ïc. In particular, K increases as the overdrive factor
f decreases, i.e., the lower the postshock temperature, theFickett and Davis [17]). Linear-stability analysis of the

conservation equations (3.7), by Erpenbeck [16] and Lee slower the reaction becomes.
In the numerical simulations presented here, the spatialand Stewart [29] verify that the system is unstable for a

large range of the parameters c, q0, Ea, and f. ZND profiles for various overdrive factors are evaluated
and used as initial conditions. The truncation error is leftIn the following, the variables and the parameters of the

system have been made dimensionless by reference to the to trigger the instabilities, and the evolution process is
observed. The state at the left boundary is always givenuniform state ahead of the detonation front; hence f be-

comes the stability parameter of the system. The remaining by the state at the end of the reaction zone at t 5 0, that
is, the left endpoint of the ZND profile. All computationsparameters have been fixed as follows:
are performed with CFL 5 0.5.

As a first test, the overdrive factor is taken to be f 5c 5 1.2, q0 5 50, Ea 5 50.
1.8. This is a case of a stable detonation. The shock speed
and stiffness coefficient for that overdrive are D 5 9.1357According to linear-stability studies, there is a critical value

f* at which the real part of one of the eigenvalues of the and K 5 145.69, respectively. The time history of the shock
pressure, i.e., the pressure immediately behind the shock,system changes sign and becomes positive. The system

is unstable for overdrives below this critical value, with is presented in Fig. 10; the fluctuation of the shock pressure
decays with time. The resolution for that simulation is 15additional eigenmodes becoming unstable as f decreases.

This is to be expected, since a decrease in the overdrive pts/L1/2.
The results of the time history of the shock pressureimplies a lower postshock temperature and an increasing

ratio of the activation energy over this temperature. That are in very good agreement with the results obtained by
Bourlioux et al. [5], using the PPM algorithm and front-makes the reaction zone more sensitive to small changes

of the hydrodynamic shock strength. The critical value of tracking, with the same resolution.
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FIG. 11. (a) Shock pressure time history for a detonation with an overdrive factor, f 5 1.60. Resolution, 20 pts/L1/2. Horizontal line represents
ZND solution. (b) Pressure spatial profile for a detonation with an overdrive factor, f 5 1.60, at t 5 80.0. Resolution, 20 pts/L1/2. (c) Variation of
peak pressure with grid resolution for various schemes. Detonation with overdrive factor f 5 1.60.

Subsequently, the overdrive factor is lowered to f 5 1.6. sented in Fig. 11a. The spatial profile of the pressure at
time t 5 80.0 is presented in Fig. 11b. Following QuirkThis case corresponds to D 5 8.6134 and K 5 230.75.

Linear-stability analysis predicts one unstable mode for [44], a convergence study for the peak shock pressure for
various numerical schemes is performed, and the resultsthis case. The time history of the shock pressure is pre-
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FIG. 11—Continued

are presented in Fig. 11c. The numerical schemes are: f 5 1.30. The shock speed and stiffness coefficient for this
detonation are D 5 7.764 and K 5 583.71. Linear-stabilityPPM with front-tracking and mesh refinement (Bourlioux

et al. [5]), Roe’s solver with superbee limiter (Quirk [44]), analysis suggests three unstable modes for this case. Bourli-
oux et al. [5] proposed the existence of chaotic-pulsationRoe’s solver with the minmod limiter (Quirk [44]), and

the present unsplit scheme. In this figure, a relative mesh instabilities because they observed a sensitive dependence
of the results on the initial data, as is characteristic ofspacing of 1 corresponds to a resolution of 10 pts/L1/2.

Similarly, a relative mesh spacing of 0.25 corresponds chaotic systems with a small number (greater-than or
equal-to, 3) of degrees of freedom (e.g., Nicolis [39]). Spe-to a resolution of 40 pts/L1/2. The schemes can be seen

to converge to approximately the value predicted by cifically, they observed that slightly perturbed initial data
produced results that are qualitatively similar but quantita-Fickett and Wood [18], who estimated that the peak

pressure is 98.6. tively different.
Similar behavior is demonstrated in the present studySubsequently, numerical results are obtained for lower

overdrive factors, f 5 1.40 and f 5 1.34. For f 5 1.40, the in simulations performed using the unsplit scheme. This
can be verified by comparing the shock pressure historyparameters are D 5 8.06, and K 5 411.98. Linear-stability

analysis predicts two unstable modes for this case. The of unperturbed initial profiles, as presented in Fig. 14a,
with the pressure history of perturbed initial profiles inshock pressure history, which exhibits a period-doubling

oscillation, is presented in Fig. 12a, and the spatial profile Fig. 14b. To perform these simulations, a perturbation is
added to the ZND profiles of the fluid-dynamic variablesof pressure, at time t 5 100, is presented in Fig. 12b. For

f 5 1.34, the parameters of the problem are D 5 7.88 and given by a sinusoidal wave of amplitude 0.1% of the values
behind the shock, with unity wavelength.K 5 504.91. This is a case with three unstable modes,

according to linear-stability analysis. The shock pressure Numerical simulations using high-order algorithms for
even lower overdrive factors had not been published untilhistory and the spatial profile of the pressure at t 5 100

are presented in Figs. 13. The results for both overdrive recently. Linear stability predicts an increased number of
unstable modes as f decreases. He and Lee [22] presentedfactors are obtained with a resolution of 40 pts/L1/2. Nu-

merical simulations with higher resolution produce the results obtained by a split algorithm, for overdrive factors
as low as f 5 1.10. For this case, which corresponds to asame results in both cases.

The overdrive factor is lowered further, to a value of shock speed of D 5 7.1418 and a stiffness coefficient K 5
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FIG. 12. (a) Shock pressure history for a detonation with an overdrive factor, f 5 1.40. Resolution, 20 pts/L1/2. Horizontal line represents ZND
solution. (b) Pressure spatial profile for a detonation with an overdrive factor, f 5 1.40, at t 5 100.0. Resolution, 20 pts/L1/2.

1389.58, they found that the initial perturbations die out, tion). They attempted a connection between the detona-
tion quenching they observed and linear-stability analysis,that the postshock values of the variables become steady,

and that the reaction front lags behind the hydrodynamic noting that, at f 5 1.165, the imaginary part of the first
eigenvalue becomes zero. We note, however, that linear-shock at an ever-increasing distance (quenched detona-
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FIG. 13. (a) Shock pressure time history for a detonation with an overdrive factor, f 5 1.34. Resolution, 20 pts/L1/2. Horizontal line represents
ZND solution. (b) Pressure spatial profile for a detonation with an overdrive factor, f 5 1.34, at t 5 100.0. Resolution, 20 pts/L1/2.

stability analysis is helpful for overdrives close to f* and the phenomenon of thermal runaway; the reaction front
stays temporarily behind the main shock and the tempera-not for overdrives close to unity.

Furthermore, this system of equations cannot produce ture in the area between the reaction front and the shock
is low. In this area, therefore, the source term on the right-a quenched detonation at large times. This is because of
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FIG. 14. (a) Shock pressure time history for a detonation with an overdrive factor, f 5 1.30. Resolution, 80 pts/L1/2. Horizontal line represents
ZND solution. (b) Shock pressure time history for a detonation with an overdrive factor, f 5 1.30, and perturbed initial data. Resolution, 80 pts/
L1/2. Horizontal line represents ZND solution.
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FIG. 15. (a) Shock pressure time history for a detonation with an overdrive factor, f 5 1.10. Resolution, 15 pts/L1/2. Horizontal line represents
ZND solution. (b) Shock pressure time history for a detonation with an overdrive factor, f 5 1.10. Resolution, 50 pts/L1/2. Horizontal line represents
ZND solution.
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hand side of the species equation is exponentially small. propagates upstream causes the explosion of the pocket of
The process in that region can be described as homoge- unreacted material. This second explosion gives birth to a
neous combustion; i.e., after some time, the source term second pair of shock waves. Spatial profiles of the flow
becomes large and a rapid explosion takes place, resulting variables during such an explosion are given in Figs. 17.
in high combustion spikes. This process repeats itself, until t Q 55, when the explo-

An underresolved simulation for f 5 1.10 is presented sions become large. After that, the detonation oscillates in
in Fig. 15a. The proposed unsplit scheme is used, with a an irregular way and appears to correspond to the situation
resolution of 15 pts/L1/2. The result is in excellent termed ‘‘spatial and temporal chaos’’ (e.g., Nicolis [39]).
agreement with the result of He and Lee [22], obtained Resolutions up to 250 pts/L1/2 are used for this case. It is
with a mesh of 50 pts/L1/2, up to time t 5 60.0 (it is at that observed that resolutions finer than 15 pts/L1/2, produce
time that He and Lee [22] stopped their simulation). The qualitatively similar, but quantitatively different, results at
high rise of the shock pressure that occurs at time t Q 65.0 large times. In such highly unstable cases, different resolu-
is due to the phenomenon of thermal runaway discussed tions are equivalent to different initial conditions. Further
above. numerical investigations, with much higher resolutions,

When the resolution is increased in the current simula- would be required for a definitive conclusion, even though
tions, a dramatic change takes place (see Fig. 15b). The the present numerical evidence indicates that the detona-
temporal profile of the shock pressure becomes irregular, tion does not quench and that the system exhibits chaotic
with no evident structure. At time t Q 8.0, the shock pres- behavior for f 5 1.10.
sure drops to a value around p Q 27.0. The temperature
at this point is around T Q 3.4, which is indeed too low to

4. CONCLUDING REMARKS
initiate and sustain the chemical reaction. Consequently,
the reaction front is convected by the flow and stays behind
the hydrodynamic shock. A new approach for evolving hyperbolic systems with

In the region between the reaction front and the shock, source terms has been presented. Performing the decom-
however, the temperature is not constant. It can be verified position of the equations to a set of scalar fields along
that there are small pockets of material with higher temper-

selected paths in space-time, it is possible to identify associ-
atures (see Fig. 16a). Recall that the initial fluctuations in

ated invariants along these paths that permit the construc-the shock pressure produced shock waves that travelled
tion of unsplit algorithms for the numerical integration ofupstream (these waves can be seen in Fig. 16). These waves
these laws.interacted with each other and some reflected back, trav-

The proposed scheme was tested on a scalar conserva-elled downstream, and created the temperature gradients
tion law with a nonlinear source term and on the one-in the region discussed above. Higher temperature points
dimensional compressible. Euler equations for reactingare responsible for chemical-reaction initiation. The area
flows. The scheme is found to be accurate and robust. Inbetween the initial reaction front and the hot spot remains
the scalar case, increased stiffness may, depending on theinert. It develops to a pocket of unreacted material as soon
initial data, produce continuous solutions with high propa-as the hot spot has burnt completely.
gation velocities. Unless the computational grid is suffi-In the beginning, the reaction inside the pocket is slow
ciently resolved, these velocities may not be captured cor-because the source term in the species equation is still
rectly with explicit schemes. Overall, the proposed unsplitexponentially small. This early stage of the combustion
scheme is more accurate than the equivalent split version.can be considered as a constant-pressure process. When

In the case of reacting flows, useful insight for the evolu-the source term becomes larger, however, a relatively rapid
tion of detonations in the unstable regime was obtained.explosion occurs. During this stage of combustion, the den-
The question of the long time behavior of detonations nearsity is initially almost constant (for inertial reasons) with
the CJ point is still open. Results obtained by the presentthe temperature rise producing a large pressure rise. This
scheme indicate chaotic behavior of the system, in contrastpressure rise, however, produces two shock waves, one
with recent previous predictions.travelling downstream and one upstream. The downstream

An advantage of the new approach is that it can beshock wave catches up with the main shock. The time
generalized to multidimensional flows, in a straightforwardrequired for this to take place can be estimated by the
way. The system of conservation laws can be decomposedshock-pressure history; cf. Fig. 15b. In this figure, the sud-
to a set of homogeneous ODEs, as in the 1D case, thatden jumps in shock pressure, at time up to t Q 55, corre-
hold along selected manifolds in (x, y, t) space. The studyspond to the overtakings of the main front by shocks pro-
of the geometry of these manifolds and the design of unsplitduced during earlier explosions. The increase of the shock
multidimensional algorithms, is the subject of work pres-pressure restarts the detonation process behind the shock,

until it drops again to a value p Q 27.0. The shock wave that ently in progress.
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FIG. 16. (a) Temperature spatial profile for a detonation with an overdrive factor, f 5 1.10, at t 5 12.0. Resolution, 50 pts/L1/2. (b) Pressure
spatial profile for a detonation with an overdrive factor, f 5 1.10, at t 5 12.0. Resolution, 50 pts/L1/2.
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FIG. 17. Spatial profiles of the flow variables at the area of an explosion, for a detonation with overdrive factor, f 5 1.10. (a) Profiles at
t 5 12.0, 13.0, 13.5. Resolution, 50 pts/L1/2. (b) Profiles at t 5 14.0, 15.0, 16.0 Resolution, 50 pts/L1/2.
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FIG. 17—Continued
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